Kumpulan Soal Cerita Tabung dan Pembahasannya

Tabung merupakan bangun ruang yang memiliki alas dan tutup berbentuk lingkaran, sedangkan selimutnya berbentuk persegi atau persegi panjang. Pengembangan soal yang berkaitan dengan tabung dapat berupa soal langsung dan soal cerita tabung.

Volume tabung dapat dihitung dengan cara mengalikan luas alas dengan tingginya. Luas alas diperoleh dari \(\pi\) x jari-jari x jari-jari. Sehingga diperoleh rumus volume tabung yaitu \(\pi\) x jari-jari x jari-jari x tinggi tabung

Baca: Rumus Volume Tabung

Kumpulan Soal Cerita Tabung

Pengembangan soal cerita dari tabung mengarah pada 3 hal yaitu volume, tinggi, dan alas. Berkaitan dengan alas tabung dapat ditanyakan panjang jari-jari atau diameternya. Berikut kumpulan soal yang digolongkan berdasarkan ketiga hal tersebut.

A. Mencari Volume Tabung

Soal 1

Sebuah bak penampungan air yang kosong berbentuk tabung memiliki diameter 100 cm. dan tinggi 160 cm. Selama satu jam telah terisi seperempat dari volume seluruhnya. Banyaknya air yang diperlukan untuk memenuhi bagian yang masih kosong dari bak penampungan air tersebut adalah … cm\(^3\). (\(\pi\) = 3,14)

Pembahasan:

Volume tabung = \(\pi\) x r x r x t x \(\frac{3}{4}\)
= 3,14 x 50 x 50 x 160 x \(\frac{3}{4}\)
= 942.000 cm\(^3\)

Jadi air yang diperlukan untuk memenuhi bagian yang masih kosong adalah 942.000 cm\(^3\).

Soal 2

Sebuah kaleng susu berbentuk tabung dengan panjang jari-jari alas 6 cm dan tinggi 20 cm. Kaleng tersebut berisi penuh dengan susu. Volume susu dalam kaleng tersebut adalah … cm\(^3\). (\(\pi\) = 3,14)

Pembahasan:

Volume tabung = \(\pi\) x r x r x t
= 3,14 x 6 x 6 x 20
= 2.260,8 cm\(^3\)

Jadi volume susu dalam kaleng tersebut adalah 2.260,8 cm\(^3\).

B. Soal Cerita Mencari Tinggi Tabung

Soal 1

Sebuah drum berisi penuh dengan minyak memiliki diameter 70 cm dan tinggi 110 cm. Pada hari pertama sebanyak 144,5 liter minyak laku terjual. Pada hari kedua sebanyak 125.000 cc minyak laku terjual. Minyak yang tersisa dalam drum masih setinggi … cm. (\(\pi\) = \(\frac{22}{7}\))

Pembahasan:

Volume tabung = \(\pi\) x r x r x t
= \(\frac{22}{7}\) x 35 x 35 x 110
= 423.500 cm\(^3\)

Sisa minyak dalam drum = 423.500 cm\(^3\) – 144,5 liter – 125.000 cc
= 423.500 cm\(^3\) – 144.500 cm\(^3\) – 125.000 cm\(^3\)
= 154.000 cm\(^3\)

Volume tabung tersisa = \(\pi\) x r x r x t tersisa
154.000 = \(\frac{22}{7}\) x 35 x 35 x t tersisa
154.000 = 3.850 x t tersisa
154.000 : 3.850 = t tersisa
40 = t tersisa

Jadi sisa minyak dalam drum setinggi 40 cm.

Baca: Rumus Luas dan Keliling Lingkaran

C. Mencari Alas Tabung

Soal 1

Sebuah kaleng roti berbentuk tabung dengan volume 9.420 cm\(^3\) dan tinggi 30 cm. Diameter kaleng tersebut adalah … cm. (\(\pi\) = 3,14)

Pembahasan:

Volume tabung = \(\pi\) x r x r x t
9.420 = 3,14 x r x r x 30
9.420 = 94,2 x r\(^2\)
9.420 : 94,2 = r\(^2\)
100 = r\(^2\)
10 = r

Diameter = 2 x jari-jari
= 2 x 10
= 20 cm

Jadi diameter kaleng tersebut adalah 20 cm.

Simak: Cara Menyelesaikan Akar Kuadrat

Soal 2

Setengah volume tabung ada 38.016 cm³ dan tinggi tabung 42 cm. Jari-jari tabung tersebut adalah ….. (\(\pi\) = \(\frac{22}{7}\))
A. 26 cm
B. 24 cm
C. 18 cm
D. 12 cm

Pembahasan:

Volume tabung = 2 x setengah volume tabung
= 2 x 38.016
= 76.032

Volume tabung = \(\pi\) x r x r x t
76.032 = \(\frac{22}{7}\) x r\(^2\) x 42
76.032 = 22 x r\(^2\) x 6
76.032 = 132 x r\(^2\)
76.032 : 132 = r\(^2\)
576 = r\(^2\)
24 = r

Jadi jari-jari tabung tersebut adalah 24 cm.

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.